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I. INTRODUCTION

What is the nature of science? This question is very important

and in the past many attempts have been made to answer it in a short period

of time and space. We deny the possibility of such a condensation. On the

other hand, we believe that by practicing science the student will acquire

a "feeling for the nature of science". Thus, our goal in writing this

unit is to permit the student to engage in scientific investigation at

different levels which will enable him to develop this feeling. Each section

of the unit is self contained and may be used independently of the others

depending on the needs and development of the students. It is hoped that the

material will give the student .a wealth of experience upon which his later,

work in science can be based. The discussion of science from a historical

or philosophical standpoint is viewed as an extension to the primary material

of this unit.

In keeping with the philosophy of using the inductive or "self

discovery" method the experiments are designed to get the student involved

in scientific investigation by using a scientific method. The student begins

by using his everyday experienceS to make ids own observations, gather his

own data and develop his own scientific method. The experiments move from

familiar intuitive type problems requiring little or no use of measuring de-

vices to the more abstract typically "scientific" prohlenr where rneasur.ement

and analysis of numerical data is a crucial part of the experiment.

Science should not be merely talked about. It involves a type of
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thought which must be experienced to be understood. Richard P. Feynman,

one of the most prominent 20th Century physicists, has emphasized the emotion-

al side of science.

The 'same thrill, the same awe and mystery, come again and again
when we look at any problem deeply enough. With more knowledge
comes deeper, more wonderful mystery, luring one on to penetrate
deeper still. Never concerned that the answer may prove disappoint-
ing, but with pleasure and confidence we turn over each new stone
to find unimagined strangeness leading on to more wonderful
questions and mysteries - certainly a grand adventure.

To a scientist, then, science is both a "dreaming" and a "doing',

it is creative endeavor, whose successful pursual cannot he assured by

methodically following a fixed sequence of steps like baking a cake according

to a faithful recipe. Contrary to popular notion, there is no single 'method"

that leads scientists unerringly to their discoveries. Although there are

similar features that characterize what scientists, do, scientific methods,

as such, are as numerous as there are scientists. This notion is admirably

expressed by Percy W. Bridgeman. lie states:

It seems to me that there is a good deal of ballyhoo about

scientific method. I venture to think that the people who
talk most about it are the people who do least about it.
Scientific method is what working scientists do, not what
other people or even themselves may say about it. No working

scientist, when he plans an experiment in the laboratory, asks
himself whether he is being properly scientific, nor is he
interested in whatever method he may use as method...

In order to put across this notion of science we feel that the student must

actually experience science. Consequently, all laboratory and clasSroom

work in this unit has been designed to reflect a complete scientific process.

Every attempt has been made to avoid materials which involve only one part of

the process at a time (e.g., observation, classification, etc.). An exercise

14



stressing merely observation alone is not "doing" science, but is merely

talking about it.

The titles of the remaining sections of this unit are listed in

the flow chart on page 4. As the titles imply, there is a natural hierarchal

development as we go from the non-abstract to the abstract. But order is

not immutable; nor is it necessary that each section of this unit be covered,.

if the unit is to be used successfully. Each section is designed to be

reasonably self contained so the end of that section may be used as an exiting

pOint from thia'study of the Nature of Science. Mc:eover, to facilitate flex-

ible use, each section has been written to conform as closely as possible to

a single format given below.

SECTION STRUCTURE (NON-ABSTRACT LAB. ETC.)

A. Summary of the essential ideas contained in the sub-unit.

B. Examples of an Approach. This section describes a typical

classroom experience which has had some success in the past.

C. Alternative Activities. A list of alternative laboratory work,

discussion questions, or homework questions.

D. Suggested readings and other teaching aids where applicable.

The unit on the Nature of Science has been designed primarily to

be used as an introductory part of the course; however, it does not have to

be used for this purpose. It would be equally appropriate to end the course

with some of the more sophisticated sections contained in this unit. The

students would then get a chance to think 'about just what they have really

learned during the semester.
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UNIT FLOW CHART

I.

INTRODUCTION

II.

ASSESSMENT OF FAMILIAR PROBLEMS

THE SCIENTIFIC METHOD - A COMPARISON STUDY

IV.

SCIENTIFIC KNOWLEDGE

V.

NUMERICAL PATTERNS AND MEASUREMENT

VI.

A SUMMARY

Flow Chart for Alternate Usages of Unit

Fig. 1
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II. ASSESSMENT OF FAMILIAR PROBLEMS

A. SYNOPSIS

We begin our study of the nature of science at the simplest level,

namely, by analyzing some of the popular scientific notions of phenomena

that are familiar to everyone. There are many scientific notions in our

culture today which are so widely believed that they are accepted as being

intuitively obvious. All of you have a considerable exposure to

these notions. In effect, you will be thinking in a "scientific fashion"

abbot ideas already very familiar to you.

The study is limited to a discussion format, the business of

gathering data will be deferred until later since we are limiting ourselves

to dealing with those things "commonly known" and analyzing what we know

and how we know it. This gives us an opportunity to study the process of

going from "observing" to "knowing" in a familiar context.

B. EXAMPLE APPROACH

The following gives a possible teacher-student dialogue concerning

a very familiar experience.

T: There have been two conflicting ideas about what causes day and night:

i) The earth revolves on its axis.

ii) The sun revolves about the stationary earth.

Which is correct?

S: The first theory is pbviously correct:

17
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T: Have you ever seen the earth revolving?

S: No I guess not.

T: But you have seen the sun going from one side of the sky to the other.

So isn't it obvious that the second theory is correct?

S: Yes! That seems correct, but I know that it isn't correct.

T: How do you know then: Prove to me that the earth revolves in space.

S: I've thought of a lot of things and I can't seem to do it.

T: Well, is it possible that the first theory could be correct?

S: Yes! I can see that the sun would look like it traveled from east to

west if the earth does revolve (like I know it does). I can picture

in my mind sunlight falling on the earth, the earth rotating, and so on.

T: But you can also see how the second theory is correct. How, now can

you decide which one is correct. Fortunately, in this class, you won't

be burned at the stake for choosing to argue for the first theory.

S: Well, lets see! I could go into outer space and see. Today, in our

modern age. I could actually see if the earth is rotating.

T: True: But in order to decide this question you must make sure your

spaceship is stationary in space. For example, if your spaceship is in

orbit about the earth, the earth would look like it was rotating even

if it wasn't.

This particular question is a difficult one to resolve, mainly

because we do not have direct and easy access to measurements of the system

under discussion. There is no simple experiment one can perform to settle

the issue. Theoretically one could - as stated above - man a spaceship to

18
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take him sufficiently far from the earth that he could make a direct visual

inspection. But that experiment alone would not be sufficient, for he would

have to make assurances about his own motion before being able to draw a

conclusion about the motion cf the earth.

The problem is not insolvable, however, and man did come to a

conclusion that the earth was moving long before he had such expensive and

powerful tools as spaceships. As it is well known, observations of the

relative motion of the heavenly bodies coupled with the laws of physics

settled the problem. Accounts may be found in several sources (See

references 2 and 3). However, at this point, we are less concerned about

"the correct" solution to this problem than we are about the criterion by

which we chose one theory over another. The accounts cited provide good

examples of the analytical process for reaching a decision. Before you

study one of these articles make a comparison of the two models on the basis

of the facts you already know.

QueztAlona

1. List all the evidence that you can think of that supports
the idea that the earth is rotating. List all of the
evidence that contradicts that notion.

2. Weigh the two sets of evidence and on their basis alone
reach your own conclusion about the motion of the earth.

3. Discuss the validity (or reasonableness) of these statements:

(a) If the earth were rotating everyone would fall off

(b) The fact that oceans have tides is evidence of the
rotation of the earth. As the earth rotates, the
water "sloshes" around causing tides.

19
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(c) If the earth were rotating, we would feel the push
of the atmospheric wind as a result. The wind would
be strongest at the-equator than at the poles because
points on the equator would be moving faster. But
as this does not happen we must conclude, the earth
is at rest.

(d) If the earth were rotating it would he slowed down by
the friction with the atmosphere and, hence, slow down
eventually. Since the earth is several million years
old it could not still be rotating and must have
stopped by now even if it were rotating at first.

(e) The earth is rotating, but so slowly that no instrument
made on earth can detect it.

(f) Some evidence is more conclusive than others.

(g) If the most emminent scientist in the would says that
the earth is rotating, then it must be so.

(h) If the most emminent scientist in the world says
the earth is rotating, it is still only hearsay.

(i) Every man must determine for himself what is'true.

(j) Since the majority rules, we can all vote on the issue
of whether the earth is moving to decide the truth of
it.

4. Outline the steps you used in coming to a decision so that
the next time you face such a question you will have a
procedure to follow to resolve it.

5. Study one of the references cited that contains an account
of the resolution of the question of whether the earth is
at rest or not. Compare the steps in your decision-making
process to theirs.

6. What is scientific evidence?

7. How is scientific evidence used proving facts?

20
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C. SUGGESTIONS FOR OTHER PROBLEMS

Using the methods and criteria developed in the preceding section,

analyze the validity of the following statement.

1. The earth is a sphere floating in space.

2. The earth is flat.

3. The moon produces light of its own like the sun.

4. Moonlight is sunlight reflected off the moon.

5. Blacks are genetically inferior to whites.

6. Frog urine causes warts.

7. Your personality is determined by the month in which you
are born.

8. Cigarettes cause cancer.

9. There is life after death.

10. Man evolved from the ape.

11. There are people with extra-sensory perception.

D. REFERENCES

1. "Modern Science and Human Values" by Everett W. Hall.
This presents a very clear discussion of early astronomical
ideas.

2. "The Sleepwalkers" by Arthur Koestler. This book contains
an exciting account of the discoveries on which classical
physics is based, as well as a privileged view of Koestler's



reconstruction of the personalities of some of the great
scientists and the process of creation.

3. "Astronomy" by E. G. Ebbighauser, second edition, chapters
1 and 2. Published by the C. E. Merrill Co., Columbus, Ohio.
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III. THE SCIENTIFIC METHOD - A COMPARATIVE STUDY

A. SYNOPSIS

This section is designed to assist the teacher in involving students

in a variety of several separate scientific activities and then making a

comparative study of these experiences at their conclusion. Each experiment

has a different theme and approach; yet, each contains the elements of the

entire scientific process. A comparison of the structures of these varied

investigations will emphasize the general factors common to all scientific

studies.

B. EXAMPLE ACTIVITIES

A description of each of the experiments is listed below. In the

main they are written as teacher guides, although some have large sections

of instructions for the student bordered from the rest of the section. These

instructions taken as a whole from each section can be reproduced as laboratory

directions for the students.

Assign students to work in small groups on the experiments. Several

groups may work on the same experiment simultaneously.

When each group has completed its individual experiments or gotten

sufficiently near a completion point that they have drawn some conclusions,,

it is asked to make a report of their findings. The essential information

of the reports are to be written on the board to be evaluated by the class.

With the teacher acting as research co-ordinator the following kinds of



12

questions should be posed:

(a) How are the studies alike? That is:

(i) What was the first thing done in each case?

(ii) What was done ss the last step in each experiment?

(b) When predictions were made, how were you able to determine
whether they were correct or incorrect?

(c) Did your imagination play any part in Your predictions or
your observations?

'24
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1. Rock Studies

Material: None required

Data Cottecti.on

Preparation for this investigation begins before the regular class

meeting. The assignment is simple. Students are to choose convenient areas

around the campus, from which to gather a collection of small rocks and

pebbles. At least ten samples from each area should be considered a

minimum sample grouping. Each study group should sample at least three

different areas.

Data Anatyzio

In the laboratory, examine the rocks carefully, noting and.7ecording-

as many distinct properties of each rock as you need to identify it.

Create categories to assist you in classifying your collection. For example,

you might consider: color, texture, shape, size. and hardness. Do not limit

yourself to only these properties but use others as well. Once a nroperty is

chosen, you should also be sure that you have some way of measuring it object-
/

ively so that if someone else classified it according to the same property he

would reach the same conclusion as you.

After a complete description of each rock has been recorded, search

for patterns in your data.

(a) Invent a rock classification scheme using the pronerties listed
above as well as others you may think of.

(b) Do rocks of a given type have a variety of'sizes or do they seem
to occur in one natural size?

(c) If there is a variety of sizes within a rock type, what are
the size variations?
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(d) How do size variations differ from one rock type to another
type?

(e) Is there a pattern in the growling s in which different rock
types are naturally found, i.e., do certain kinds of rocks
seem to be found only near other kinds of rocks?

(f) Is there a relation between different properties. e.g., do
larger rocks have a higher degree of hardness?

Questions similar to those ao
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(d) How do size variations differ from one rock type to another
type?

(e) Is there a pattern in the groupings in which different rock
types are naturally found, i.e., do certain kinds of rocks
seem to be found only near other kinds of rocks?

(f) Is there a relation between different properties, e.g., do
larger rocks have a higher degree of hardness?

Questions similar to those above may also be posed for the other properties.

Do not-limit yourself to-U-sing these questions only; they are meant to serve

as a guide.

Apptication Anatyai4

Using the above pattern of analysis, try to use your observations

as evidence of some larger class of phenomena. That is, try to use your data

to learn if there are some fundamental things that a study as simple as rock

collecting can disclose. For those who are faint hearted in this part of the

study, imagine what fantastic conclusions someone like the fictional detective

Sherlock HolMes or Charlie Chan could draw from the thinest shreds of evidence.

Thus use your data and try to answer such questions as:

(a) How might you explain relations between properties? For
example, assume that it is found that the harder the rock,
the larger its size in natural form; how would you explain this
feature? Or suppose some students at Clark College in Atlanta
found that all rocks have a reddish cast, even after prolonged
washing, what might this suggest about the formation of the
rocks in this red clay area of Georgia?

(b) What do the patterns of textures of different hardness of
rocks or the patterns of sizes of rocks tell you about the
weather of the area in which the rocks are found?

(c) What do the patterns (or lack of patterns) in the grouping of
types of rocks tell about the evolution of the area?

Again, these questions are only gui6; create as many others as you can to make

full use of your findings.
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2. The Inaccessible Die

Materials: There are no measuring devices needed in this study. It is

necessary only to supply each study group with an "Inaccessible

Die" system which is described in detail in the figure 2 below.

kb6titac,t

,The inaccessible die study is representative of studies of a number

of phenomena in nature where the object under investigation may be probed only

indirectly. No one has ever visually observed an atom; yet we infer its

properties by its response to our probes. This experiment is designed to

have students study a system by deliberately restricted means. They will not

be able to hold it in their hands for "direct observation". Yet, they will

be able to construct a model of the object thay are studying with prohablistic

assurance that the model is correct.

Pucedune

Each study group will be given a die enclosed in a box to study. As

is indicated in figure 2, one has only a partial view of two adjacent faces

of the die at one time. The faces of the dies in the boxes will be marked

so that they are either black or white with the number of sides marked black

varying from group to group. It is the purpose of the study to construct a

model of the die using sightings of the sides that show through the observation

window. By shaking the die, a new face may be made to show.

a. Minimum Evidence for a Model:

The study of the die is begun by closing one viewing window of the

die case so that only one side at a time may be seen. Have the students

observe the die.
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cardboard die enclosure case

observation windows
Fig. 2

INACCESSIBLE DIE SYSTEM

die

This system is composed of two elements, a die and simple cubic

enclosure case as pictured above. The enclosure cube should have aides at

least twice that of the die so that the die has room to rotate once placed

in the case. The observation windows are. squares with sides one-half that

of one of the die faces. They may be as simple as holes covered by trans-

parent sheets of plastic. A regular die may be used with each face covered

with identical opague squares of cardboard marked to suit our purposes.

Once the die is marked and placed in the case, the case should be sealed.

29
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then follow the instructions below.

Proceed to collect data constructing a model of what the die within the
case looks like if all six sides could be seen simultaneously. Shake the
case vigorously and record whether a black or white side is showing.
Repeat procedure until there is data from three sightings then try to
construct a model noting success or failure and reasons for either. If
more data is required repeat procedure until enough data is taken and
explain why the number of sightings chosen were necessary.

Asking the students to draw a model after only three sightings when he

-obViousiy does not have enough data, forces him to consider how many distinct

faces he has seen. This is an appropriate point to interject the idea of the

random arrangement of the dice as the case is shaken. He knows he has not

seen every side after three sightings and maybe even then he has not seen

three distinct sides. Even after twenty five throws he cannot be certain that

there is a side that he has not seen. Every student has some intuitive feel

for dealing with probability and knows about the long shot.

Students should be encouraged to discuss the probablistic application

of their data within their research groups. Teacher guidance at this juncture

will be important.

Each study group will generate a model of their die system at the

conclusion of.this phase of the study. Using the representation shown in

figure 3, we have illustrated representative example of models that three

different groups might construct along with the supportive data in figure 4.
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Fig. 3

To show a model of the three dimensional cube in two dimensions so

that all six sides can be viewed at once, we use the representation shown

above.
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After a group has reached the stage of constructing a model

similar to one of those shown in figure 4 from their data, the students should

be asked to compare their.model with other possible models generated by groups

with similar statistical trends in their data.

Teachen2 Note4 on the StAuctute o6 The Inyezti.gati.on

a. Collect the data - generate a model and scheme to describe
the model. (}low do you describe a 3 dimensional model on a
1 dimensional piece of paper?).

b. Raise question of equivalent models and how to distinguish
between them. For example, below we show two equivalent
models that could be generated using data obtained viewing
one side at a time.

Figure 5
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c. Expose two sides of object at the same time. Raise the
question, "Can you distinguish between the two models
shown above by viewing two sides simultaneously?" With
a little thought it becomes clear that if two adjacent
sides of the first model of the die shown above is viewed,
one would see the following pairs of sides; black-black,
black-white, and white-white. While if the second die
shown above were the die in the box, black-white and
white-white sides would show simultaneously but not a
black-black combination. Thus, one could use the additional
infOrMatiodobtiinea'Wbeniireiiini two eide'ssimultaneOdsly
to distinguish between these two possible models of the
die within the box.

d. As an extension, introduce the problem where the data
obtained on viewing a die one side at a time show that
the number of times that a black side appeared indicating,
the the die contained in the box had an equal number of black
and white sides. In this case how does one distinguish
between the two models below both of which satisfy the data
obtained on. viewing one side at a time?

Model I Model II

In this case both models would display black-black, black-
white, as well' as white-white sides simultaneously. The question
is raised then, "How may one use simultaneous sightings of
adjacent sides to determine which model correcLly represents the
die in the box?"

A little thought shows that although the same combinatic ,f

colors appear when viewing adjacent sides of both dies, the
frequency with which they appear will not be the same. This is
just a more complicated version of the same problem encountered
when one views only one side eta time; eith a white side or a
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black side was seen in either case but the frequency with which the
white side showed as compared to the frequency with which the
black side appeared allowed us to predict how many black sides and
white sides the die in the box has.

Model I

Model II

b-w w-w
2

b-b b-w w-w
3 6 3

In the figure above we indicate all the combinations of
adjacent sides that can be viewed simultaneously and listed
in the frequency with which they will appea'r on a statistical
basis if two sides are viewed randomly.

Thus one can decide what model more accurately describes the
die in the box by measuring the ratio of the frequency with
which each of the combination .of colors appear.

e. Viewing two sides of the die simultaneously, make twenty
sightings and record the combination of colors that appear.
Compute the ratio of the number of times the different possible
color combinations are seen to occur and compare these results
to the prediction's above.
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C. Extensions

1. Suppose in viewing one side of a die at a time concealed in a
box your data showed that:

a. Only two color faces showed, a white face or a black face

b. The white face showed twice as often as black

Using this data alone it is possible that the object in the box
ts-a-e4xsided-die-wit4 two bLsc'k.- sides-and four-,ytt-te-sides or
it could be a eight sided object as shown in the figure below
that rotates on its base when shaken only showing six of its
eight sides.

Show how you could use the information gained by viewing two
adjacent sides at a time to distinguish between these two
possibilities of correct models for the object in the box.

when shaken object
rotates freely showing
any two adjacent sides

Figure 6

when shaken object rotates
freely showing any two adjacent
sides except top or bottom
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C, Extensions (continued)

2. The study of the inaccessible die is like the study of the solar

system or the nucleus of atoms; they are not directly accessible. We cannot

touch them but we have collected fragments of information about them. Taken

as a whole those that information provides us with a "picture" of these

systems.

Compare the quality of knowledge about these systems, answering

the Questions:

(a) Are you absolutely sure about your model of the die?

(b) Are scientists absolutely sure about their model of the
moon?

(c) After a hundred sights of adjacent sides of the die which
only showed white and black faces, is it possible that the
die had one red side that had never shown? Would it
be "probable"?-

(d) From all evidence so far the lunar sampling shows that
there is no life on the moon. However, is it still
possible there is life on the moon? Is it probable?

u8
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IV.SCIENTIFIC KNOWLEDGE

A. SYNOPSIS

The examples of scientific problems we have encountered so far have

been chosen to illustrate the most elementary science problems, devoid of

romp4a'ftiea., eloserwardpr21,/emic that are,morz clearly

representative of those that occupy modern scientists, the underlying features

that give science a quality of abstraction becomes more pronounced. First, it

is the nature of science to deal with an 'indirect" knowledge of things if by

direct knowledge one means experiencing only with the primary five human senses.

Scientists use measuring instruments as extended forms of quantitatively precise

senses. The world of reality is sensed through them and described in terms of

their measures. Any scientific knowledge can always by reduced to inferences

from the results of an experiment. This does not exclude the "experiments" of

seeing, smelling, and touching performed with the "instruments" of the eye,

nose, and fingers. These too we include; they simply are not instruments that

give reproducible quantitative results and are used to assess data qualitatively.

As an extreme illustrative example of a problem where we seek answers

in terms of indirect knowledge, the mysterious black box problem described

below is offered. It provides ample grist for the consideration of the question

of the nature of scientific knowledge.

B. THE MYSTERIOUS BLACK BOX

The apparatus of this experiment consists of a sealed box (old cigar

38
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box will do), several input jacks, two of which are internally connected to a

battery, several switches, and a light bulb. The diagram below illustrates

an example, The sealed box is then presented to the students to determine

what is inside.
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CIRCUIT DIAGRAM FOR BLACK BOX

rL__ I
0_1

B C

_1 L

Fig. 8

1) The switches A and B are single pole, double throw (SPDT) switches, C
should match them in external appearance but otherwise does not matter.

2) The lamp can be plugged into any combination of output jacks 1, 2, 3,
or 4.

3) The light will light only when plugged into jacks 1 and 2, and when
switch A and B are both up or both down.

4) Switch C, and jacks 3 and 4 do not respond in any way to experimentat-
ion. Consequently, with a little coaxing, the students can see that there
is no scientific way of determining what is attached to these devices.

?41
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Allow several students to play with the box. (It must be a

psychological law that human beings like to play with switches). In a very

short time the class will have passed a very important step in the scientific

thinking process. They will all be aware that there is an interesting

problem to be-solved. How does the black box work? What is inside the

box?

Quickly the students will begin performing small experiments of their

own. Which switch positions cause the bulb to light up? What patterns cause

the bulb to shut off? What is the effect of plugging the light bulb in at

various output jacks?

At this point the class can easily be steered into realizing that

they need a convenient way of indicating switch positions and bulb positions.

It is not difficult to get the class to think of using numbers or letters to

designate switches and output jacks. Here, then, the class can begin ro see

how the development of a concise "scientific notation" greatly facilitates

logical thinking.

Various students at this point might also suggest that some of

their past, experiences with electrical circuits might be applicable in the

present situation. They might suggest a flashlight, automobile headlights,

ordinary house lights, that is, anything which involves switches and objects

lighting up.

Finally, the students are ready to begin to guess theories which

might explain the operation of the box. Someone is sure to suggest that the

switches complete the electric circuits. Perhaps, various other ideas might be

suggested. Each student can then be asked to prove that his particular theory

is correct. Does the theory adequately Predict all 'the known facts in the

42
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problem? Can the student draw a wiring diagram which predicts the connect-

ion between switch patterns and a lit or unlit light bulb.

Immediately after the conclusion of this exercise a related discuss-

ion and/or a homework assignment must be given. It should be emphasized that

the main purpose of the experiment was to learn about the scientific process.

Discovering what was in the'black box was an opportunity for involvement in

that process. Any questions can be asked which lead the student toward

wondering how he went about solving the problem. For example,

1) Why were you interested in discovering what was in the box?

2) Did you utilize any of your past experiences in order to find the sol-
ution? How did they help?

3) Before we opened the box were you sure of what was in it?
Could it have been different?

4) How did you go about deciding what was in the box? What did you base
your ideas on?

5) Do you think there was any set method that we used today in finding
the solution?

6) Did you use your imaginations? Did you make a lot of guesses?
were alot of those guesses incorrect?

7) How were incorrect guesses (i.e., incorrect theories) proven to be
incorrect?

8) Write down very carefully a summary of what we did today. Discuss, in
your opinion, how what we did was like what a scientist does.

9) It has been said that the experiment illustrates very much how a
scientist tackles a problem. If this is true write a short essay discuss-
ing how a scientist attacks problems.

Some of the questions are more suitabLe.xas homework exercises than
E,s-1 a

as discussion material. They all tend to get the student thinking about his

class experience as a process of thought.

This demonstration can always be used to begin discussions on a

4.3
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sophisticated level about the philosophy of science. One can begin to discuss

things like:

1) What is truth? Are scientific theories absolutely true?

2) What is a good theory? Are they simple? Why couldn't some other
'wiring diagram be possible ?.

3) What sorts of phenomena in the world can science deal with? Is

astrology a science? What about the switch which has no effect (Switch C)?
Can science ever determine what is connected to it?

Needless to say such questions should only be asked toward the end of the

course. Other more sophisticated uses of this experiment are discussed below.

This section has several advantages. First it illustrates a

scientific problem from start to finish. Therefore, it gives the class

insights into hew a scientist tackles a problem; these insights must be re-

inforced by directed questions and other future work. Second, the unit is

simple enough to be understood and fascinating enough to be appreciated by

non-science types.

C. EXTENSIONS

This experiment also has some interesting extensions. Suppose that

after the class has completed it, the instructor alters the switch system by

adding a resistor or two into the circuit. In this case with the switches in

the same "lit" positions as before, some of the positionings will cause a

definite dimming of the bulb. The students can be asked if their previous

theory is still a good description of the phenomenon. It should be noted that

the theory still explains the "bulb" properties of the problem, but some

details are not accounted for. Should the theory be scrapped or modified?

Scientists, of course, try to modify theories when discrepancies appear rather

4 Aq
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than totally discard them if they can. If it should be modified how can the

dimming be explained? If someone proposes an idea of an object which "weakens

electricity' , where should it be placed in their previously developed wiring

diagram? Again the students, in this case, can get a good idea of the advant-

ages and limitations of scientific theories. Suppose at the end of the

experiment, after a wiring diagram has been developed which the whole class

accepts, that the instructor does not allow the device to be opened. In other

words the class can only rely on indirect evidence (the lighting of the bulb)

to determine whether their diagram is correct. One might ask the class: Is

the 'real", "correct", "truthful" explanation of what is in the box what we have

decided? How do we really know that that particular circuit is in the box?

Could not the truth be something other than what we have imagined? In other

words a discussion can be brought in at this point which delves into the prob-

lem of what science can really decide. All scientific theories are like a

model of a black box which we can never open; we must always rely on "indirect"

evidence. We can, however, construct alternate sets of experiments that

confirm in many different ways and in many instances the validity or usefulness

of our model. After all this is the purpose of science, to construct self

consistent models based on integrated theories that enable us to understand the

behavior of nature. Science does not recognize truths that are inaccessible

to experimentation. That's the domain of Philosophy.

This does not mean that if there is a natural law which prevents us

from looking in the box, the study of the behavior of the box is not a scienti-

fic problem. It may be important to know how the switching mechanism on the

box affects which light comes on and in what order. If this is the case then

r
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we become concerned with constructing a model whose predictions are consistent

with our observations. But if we are asked, "How do you know what is really

in the box?", implying that there is some reality that transcends measurement -

remember there is a physical la' which says our view of the contents of the

box is restricted - the question is beyond the scope of science. "What acts

as if it is in the box?" is a scientific question. "What is in the box?"

becomes a philosophical question.

46
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V. NUMERICAL PATTERNS AND MEASUREMENT

A. INTRODUCTION

Simply stated, the charge of the scientist is to seek order in

the behavior patterns of natural phenomena. In so doing he relies on a

rich resource of tools that are natural and useful, namely mathematics,

Mathematics is an invention that is an inseparable part of man. We are

mathematicians all. We deal with life and its problems with a sense of

symmetry, order, and balance. It is evidenced from the houses we build to

the art we produce. But for most of us this sense is a qualitative one

not easily articulated or communicant; but it is there.

This sense is also a valuable endowment in science but, as a

vagde or qualitative sense, it has limited value. Science demands a more

precise and quantitative treatment. It is in the nature of the questions

we pose and the type of patterns we seek, perhaps because of the technological

origin of science. Mathematics provides this precision. It is a language

which insures a precise and universal meaning to our descriptions of phen-

omena, that our conclusions are testable and the conditions of the tests

are repeatable. But more than that it is a language so deeply and naturally

q part of us that it is a fertile.medium for our search for patterns.

Mathematics, then, is an analytical tool. A valuable and indis-

pensible one, but only a tool. It needs stuff on which to work. If the

mathematical models we construct and the images of numerical patterns we dream

have no connection to reality, what we are doing is not science. It may be

a valuable intellectual enterprise but it will not be science. Science is
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a direct and meaningful interpretation'of natural phenomena. The bridge

between the world of reality and the world of mathematics is physical

measurement, measurement with meter sticks, clocks, and scales. This is

the stuff we knead in a search for order, the grist for study. But it too

taken alone is not science. Science is both measurement and analysis.

In this section we have developed several activities which pro-

vide a concrete basis for clarification and discussion of the role and

value of measurement and numerical patterns in the study of physical

phenomena.

B. A HISTORICAL EXAMPLE

A classic example of the use of numerical patterns in science is

the famous astronomer Kepler's use of geometry and arithmetic scrutiny to

classify the regularities of the orbits .of the planets of our solar system.

Kepler's early attempts to order the astronomical patterns is particularly

fascinating. As a young student he was captivated with the notion that the
P

number of planets were fixed and set out to discover why. His solution was

a brilliant, and unusual one. A short account is given in Appendix 3.

Religion was a great influence on the early astronomers. They

were awed by the "perfection" of the "heavenly" bodies. But as scientists,

they were equally impressed with the "perfections" of mathematics. So it was

natural that Kepler attempted to explain the order of the heavens by studying

the properties of geometry. (It was not until 90 years later with the dis-

coveries of Newton, did the principles emerge to give explanation of astronom-

ical phenomena in terms of gravitational forces) His solution involved a

purely mathematical relation between the ratio of the radii of concentric

48
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spheres inscribed inside of regular pblygons with an increasing number of

sides. It is a property of three dimensional geometry that there are only

5 regular, three dimensional polygons. During Kepler's time there were only

6 known planets. As astronomical chances (no pun intended) would have it,

the ratio of the radii of spheres so constructed was almost exactly the

same as the ratio of the orbits of the planets. This was both a stroke of

luck and an uneortunately cruel joke of nature. The fact that the numbers

are almost the same is an incredible accident. The reason that the ratios

are as they are have little to do with the properties of geomtry. (The

problem of why there are only "six" planets posed by Kepler is not consider-

ed a "basic" physics problem today; for the fact that the number is what

it is - namely nine - is due to the conditions of creation of our solar

system.)

Kepler was disturbed by the inexactitude of the result. He spent

several years of.his life on a study of the precise motions of the planets

but could not redeem his original idea. After 22 years he published his

famous three laws on which modern astronomy is based. These three laws are

also numerical descriptions; but this time his findings were obtained after

studying masses of data on astronomical sightings. These laws were, however,

not as symmetrical or as appealing as the first erroneous "law"; for its

aesthetic appeal is almost universal. Even those who know little about

science find it intriguing because of its.disarming simplicity. This is

an indication that there is a mathematical sense of symmetry lurking in all

of us, prompting us to play with numbers and shapes imitating the patterns

of nature.

49
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Kepler's three laws were arrived at after years of painstakingly

laborious study. The style and the use of mathematics used in it is quite

different from that in the first-theory. Yet, in both cases Kepler drew

on deep resources of mathematical insight to discover these patterns so

ingeniously hidden. In neither case are the patterns obvious; nor do nay

jump out at you after a moment's reflection; they only reveal themselves

with torturous effort. Moat patterns of numerical relationship among

physical properties are not as difficult to find as those Kepler uncovered.

In the next section there are several problems listed as exercises in forms

of numerical and geometrical pattern deduction.

Queation4

(a) Discuss why the basis of Kepler's first idea, namely, that
one can study the properties of geometry and from that alone

deduce the properties of the planetary system would not be

considered sciende today.

(b) Study the statement of Kepler's three laws in appendix 4 and

discuss whether Kepler's study leading to these laws may

be considered science.

0t
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C. EXTENSIONS

The studies in this section are intended to provide an opportunity

for students to practice'searching for numerical patterns associated with

the measure of quantities representing physical properties. The first set

of problems are analogues of physical; problems using playing cards and a

slide rule. In this instance these devices represent physical apparatus

with conveniently built in "meters" that generate a measure of some physical

property of interest, e.g., a length, a weight, or a time interval. The

analogue problem thus helps to relieve the anxieties that a student may

feel about the details of precisely how a quantity is measured with real

apparatus' until he has developed confidence to deal with it.

1. Patterns in Analogue Problems

a. Card Game

This activity has several variations. Its basic format
uses several decks of identical sets of cards.

Variation I: (For two players)

i) Create a pattern with a row of cards using as many mixed
decks as you need to produce the patterns that you have
in mind. Consider for example, the pattern below. .

4 6
ii) Remove several cards but leaving enough so that a pattern

is still evident.



iii) Ask your opponent to identify the pattern.

iv) As he works on a solution, your opponent may request
additional data in the form of the identity of one
or more of the missing cards as a test of the correct-
ness of his theory. Or he may simply need additional
information.

v) Each player is given 50 points at the beginning of
the game. Each time your opponent requests an
additional card he must guess its identity on the
basis of the pattern of cards showing. If he guesses
correctly, he get 10 additional points; if he does
not, he loses 10 points.

vi) The game is over when each player has identified
(correctly or incorrectly) all the missing cards.

Variation II:

For ease in accommodating a large number of groups at one
time, sketches of a sequence of cards should he drawn on a
single sheet. Each sheet has a code number to which the teacher

can refer when more data is requested

Variation III:

Games may be played between groups of students where they
arrange the pattern for the other group to find, and simultaneously
try to deduce the solution of the pattern the other group has

given them. Alternate turns are taken at giving solutions or

taking more "data".

Variation IV:

Instead of displaying an entire sequence of cards at one time
a more difficult version is to begin with a large number of

points and no information. With each card that is turned up
points are lost if the student does not predict the identity of

the card correctly or points are gained if he guesses correctly.

In figure 9, we have given several card arrangements as
suggestions.
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b. aometnic Pattetn4

This exercise is similar to the one above except geometrical

figures are used in place of the cards. With this variation in the game,

there is a greater flexibility in what features of the objects are to be

compared and ordered. Several modifications of this game are possible as

long as the essential rules remain the same:

i) There is a sequence or pattern of arrangement of the objects
that is to be guessed by the other.

ii) After the pattern is established, some of the objects are
removed so that the person trying to find the pattern may test
his solution by predicting features of the missing figure.

iii) Because comparing geometric figures is more complex than compar-
ing cards, there is an additional rule. There may be several
properties of the cards that may be useful, but give only partial

non-unique solutions. For example, if there is a pattern to the
shapes of the components of a figure that can be predicted, this
should be given credit, even if the total solution requires
knowing how these figures are connected.

As an example of this version of the game of "squares", we have

created a sequence of geometrical shapes shown in figure 10. There are two

properties that we have arranged in an order in this figure. The simplest

ordering of the figures is according to the number of intersections appearing

first in the arrangement. All possible variations of singly overlapping

triangles that produce 2, 4, and 6 intersections are displayed. This is one

feature of the ordering, but only a partial solution. With this alone,one

still does not have a unique pattern, i.e., it would give us no unique way

of ordering the figures with the same number of intersections. We have

provided for this in arranging the figures in order of increasing periphery

of the areas of overlap. If one wants to add a numerical quality to the pattern,

5 4
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the value of the pellpheries of the overlap areas could be arranged to

be increasing integral multiples of one another.

t)
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c. The Vide Rate az a Numbek Gene/tat:o/c

In this exercise, the slide rule may he considered to be a

"measuring" instrument where the numbers on its scales represent some

physical property. Comparing the numbers on adjacent scales will be

analogous to comparing numbers on instruments that measure some physical

properties. Our problem is to find a relationship between the numbers on

adjacent scales and to express it mathematically.

This exercise has an advantage over those above. Once a relation-

ship is empirically discovered by comparing a set of numbers, it may be

checked to see if it is also valid for an even larger class of number

chosen at the discretion of the experimenter, i.e. he may test his law

under new experimental conditions of his own choosing.

i) Refection between the V and A zcatez:

As a first step, it is important to have students decide precisely

how they are going to record their data. Most choose to record their data

in two column tabular fc m, with adjacent numbers on the 1) and A scales

recorded on the same row.

As the numbers are being read off the slide rule^, it may occur

to some students that they are not sure where the decimal place goes in

the numbers they are reading. They should make a guess and proceed.

The students are instructed to collect pairs of numbers adjacent

on the scales until there is enough data that suggest a pattern to them.

Patterns that may fit their data are constructed by generating rules that allow

them to obtain one set of numbers from the other. For example, if 2 and 4 are
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a pair of numbers to be related, possible relations are 2 + 2 = 4,

2 x 2 = 4, 22 4, etc. These relations are then to be tried on other

pairs of numbers until all the incorrect ones are eliminated. Once a law

has been obtained that correctly relates all numbers he has obtained from

the scale, he should try to use his law to predict a 'number adjacent to one

he has not tried yet, thus, checking the validity of his law to be extended

to more general circumstances. In this way the basic relation D2 = A may

be empirically
deduced, where D and A represent the adjacent numbers on the

D and A scale respectively.

ii) Retation between the D and K 4cate:

The relation between the D and K scales should be obtained

above and found to be D3 = K.

iii) ExtenoionA to (1.6e o6 the netations Bound above:

Encourage students to use their laws and new circumstances and

then check them. For example, use these laws and the rule to find-7)20 and

ii3797, then prove that their slide rule obeys the law by squaring the

number found to be-020 and comparing it with 20, similarly cubing the number

supposedly equal to J5.8 , cubing it, and comparing it with 5.8 .

iv) Rebation between the K and L Scate4:

At the outset of this experiment it is necessary to discuss the

importance of considering experimental error whenever making measurements. The

idea is easily extended to reading of the scales on the slide rule. How

accurately can these results be read? It is clear that there is some

inaccuracy in his readings. For the purpose of this experiment we shall
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assume the error is 5%. Students will agree that it is a reasonable estimate.

It is necessary to make this consideration especially when

studying these scales because, there is a fortuitous, approximate, yet

appealingly simple relationship between the adjacent numbers on these

scales that one is led to postulate if one believes that the scales contain

an approximate 5% error. For example, the numbers on the K scale opposite 0,

0.1, and 0.2 on the L scale are 1, 2, and 4 respectively. This data is

taken with the same assurance as that taken for the other scales. However,

for larger numbers on the L scale, the apparent relation of doubling the

numbers on the K scale as we increase the numbers on the L scale by 0.1 is

only approximately valid only if we assume an approximate 2% error in the

readings on the K scale up to values of L is 1.0. The relation is so simple

and attractive that we assume it must be right. Surely it could be no

accident.

As an exercise ask that this relation be expressed in equation

form. Thus, we arrive at the result 2
10L

K.

v) Exten4ion o6 the Retation between the K and L Acate:

This exercise is recommended for only those students with a

facility for mathematics, as they will be required to manipulate transcen-

dental equations. However, the results and the conclusions may be profitably

shared with the students who are not mathematically inclined by a class

report at the end of the exper e t.
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After having arrived at the empirical law 210E = K above, we have-

an obligation to check the validity of our law. ,One kind of such check is to

see if this result is consistent with the other laws that we hold to be-true.

We may then check this law with the law D3 = K if we had a relation between

the D and L scales we could eliminate D in these two equations and derive a

relation between the K and L scales. We provide students with the relation

Log10D = L by postulating it.

Exercises

ai) Verify that the relation Log10D = L is correct by checking a
book of tables with the values for logarithms.

aii) Using the relation Log10D = L and D3 = K, derive the relation
103L = K.

The result of this calculation yields 103L K which is obviously in conflict

with the empirical relationship. But if we check the validity of the deduced

relationship for the values of L and K used in finding the empirical relation,

we find the "theoretical" law is also valid within the limit of 5% accuracy.

Thus, we have two different mathematical relationships that cannot be

distinguished between if we have error bars of 5%. We need more accurate

measurements of the phenomena that they may represent to distinguish between

them and choose one or a better representation than the other. Or extend

our measurement to cases where the differences between the two laws is more

than 5%.

To underscore these similarities of the two laws within 5% inaccuracy

we have plotted the results of the two laws for two ranges of the values of

L and K with 5% error bars in figure 11. Significant differences between the

two laws are apparent only for large values of L, as shown in figure 12.
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MATHEMATICAL RELATIONSHIP
BETwEtN ADJACENT NUMBERS ON

THE L AND K SCALE ON THE SLIDE RULE

Value Read, on Value Predicted by
L scale K scale Relation Kt Relation, Ke

0 1 1 1
0.1 1.98 2.00 2

0.2 3.96 3.94 4
0.3 7.9 7.88 8

0.4 15.8 16.2 16
0.5 31.5 31.6 32
o..6 63 63.o 64

Note: Both sets of theoretical Relations
Kt, and Ke fall within 5% error
bars on experimental data.

Where

Hence, we cannot distinguish
between these two mathematical
relationships as correct trends
based on this data.

Ker103L, (Theoretical Law)

Ke=210L
, (Empirical Law)

0 0.1 0.2 0.3 ou4

L - Reading on L Scale

0.5
81

ou6

Fig. 11
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2. Numerical Patterns in Physical Problems

In the following problems we extend our use of the techniques

used in the previous analogue problem real physical problems -

a. The Simpa. PeRdwCttm

A set of pendulums are made available for students to study.

The set consists of several simple pendulums with identical "bobs" with

the length of the supporting string varying as well as several of the same

length but with weights so obviously different they can be distinguished

easily by.feel. The purpose of the experiment is to study some physical

property of a system that can be easily measured with a meter stick, stop

watch or force scale, for example, and that displays a simple numerical or

mathematical relationship easily detected. During the study, the values oc

a numerical description of the relation between the Properties studied will

be analyzed and its advantages over more qualitative studies pointed out.

At the outset of the experiment the students should be divided into

small study groups and each instructed to make a comparative study of their

set of pendulums in order to deduce some useful law of behavior for swinging

pendulums, such as the relation between the period of oscillation and other

properties of the pendulum. So stated, the problem is sufficiently general

to be open to many approaches, yet sufficiently specific, that students should

feel that the experiment has a direction.

As a motivation for studying this problem, several examples of the

use of hanging objects in engineering or science problems should be cited

and the value of understanding the Principles of their behavior, such as

63



pendulum clocks or suspension bridges, etc. It should also be readily admitted

that the pendulum system was chosen to study because it is simple and a rich

resource for problems.

The first stage of the investigation should be a qualitative study

that will be useful in shaping a more detailed study. Students should be

helped to organize their study by asking them to list properties of the

swinging pendulum that may be worth studying. In this way a number of

possibilities are generated, including weight, size, length, displacement,

etc. Students should then compare pendulums with different properties and

note the difference in the behavior. For example, pendulums that have differ-

ent lengths but are otherwise identical, swing at different frequencies.

Finally, for ease of analysis these statements may be translated into statements

about a single pendulum with variable properties, such as:

(i) As 1 (the length) increases, T (the period of oscillation) increases.

(ii) As d (the horizontal) displacement increases, T is unchanged.

(iii) As W (the weight of the object) increases, T is unchanged.

(iv) Etc.

Such a set of data constitutes a good qualitative description of a system.

Information such as this can be shown to be useful, informative, and even

enlightening. Several of these relationships are surprising and could not

have been anticipated. Others are obvious and clear from our everyday exper-

ience.

In order to obtain sufficient information for a comparison between

the above type of study and a quantitative one, we move to the next part of

the experiment. One of the qualitative relationships found in the first part
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of the study should be used as a subject for a more detailed quantitative

study, for example, the relation between T and 0c. ie . Instruct the students

to measure the period of oscillation and the length of the pendulum for six

to ten different values of each. Stop watch time interval and centimeter

length accuracy will suffice. A table similar to the following is thus

obtained by each group:

Table I.

.t 10cm 20cm 30cm 40cm 50cm 60cm

T .63 sec. .90 sec. 1.1 sec. 1.26 sec. ,1.4 sec.1.55 sec.

On the face of it this data is of little more value than the

qualitative description, except there is more of it. The advantage of a

quantitative measure of the properties of a system lie in the precision of

their projected predictions about untried conditions of the system. For

example, if we ask:

(i) What is the period of oscillation of a pendulum 70cm in length
and

(ii) What is the period of oscillation of a pendulum 35cm in length,

using our qualitative analysis, we could answer only, (i) it is between 1.1 sec.

and 1.25 sec., respectively. But using this data and mathematical techniques

we can give precise answers.

The use of a mathematical analysis assumes that the results we observe

are a part of a more general pattern that may be obtained by an extension of

these results. But the extensions must contain the flavor or trend of the

behavior we have noted. In tabular form we have no method of obtaining

precise answers to the questions above, but we can translate the

-6 5
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the question nicely into a problem of graphical or pictorial extensions.

We begin translating the data shown in table I into graphical form as

shown in figure 13. An answer to question (i) requires extension to

the conditions beyond those already observed by drawing a smooth curve

through all of the points that represents the behavior of the pendulum

and extending the curve "in like fashion' beyond the noints of data. In

this way we may project predictions of the behavior of the system in a

fashion "like" that of previous behavior. The numerical values of the

conditions sought we indicated on the figure 13.

Clearly there is some arbitrariness to the kind of smooth curve we

draw through the data points, but it gives us an answer that is more

precise than the qualitative results.

A representation more exact than graphical extensions may be

obtained if we-appeal to mathematical extensions. Using the same beliefs

that motivated us to draw smooth curves between data points, we may ask,

what is the simplest mathematical expression that represents a smooth curve

between the data points?" and use the resulting formula as mathematical

representation of the relationship between T and For the data used,

1 A

is appropriate.

GG
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(i) Using the table of data that you constructed similar to
table I, predict the period of oscillation for a
pendulum 5cm longer than the longest you have tried.

(ii) Plot the values of your measurements of the length
of the pendulum, 1, and its period of oscillation.

(iii) Draw a smooth even flowing curve through the points
on your plot. Continue this curve beyond the points
representing your data.
Using this curve to define a relationship between the
length of the pendulum and the period of its oscillation
predict the period of oscillation for a pendulum 5cm
longer than the longest you have tried.

(iv) Construct a pendulum whose length is 5cm longer than
the longest you have tried so far. Measure its period
of oscillation. Compare this value with the values
obtained from the table and from the plot

(v) Repeat this exneriment for a pendulum whose length is
between the length of two whose period you have
measured and recorded in your table. Predict the
period of this pendulum using the data in the table
above and then by using the curve in your graphical
plot. Finally, construct a pendulum of this length
and measure its period. Compare this value to the
other two predictions.

(vi) Discuss the relative merits of the qualitative study
and the quantitative study.
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One of the advantages of a mathematical description of a system is

its value in capturing the universal aspects of behavior of a class of systems.

For example, the description of the pendulum we have obtainedabove is in-

dependent of the shape or size of the object used to obtain the data. Thus,

the mathematical model that we have created is potentially more ,Jidely

usable as a accurate description of other swinging systems. It may, for

example, prove a valid model for fre,,ly hanging cylinders.

Problem:
(i) Check whether the relation between the length of the pendulum

and its period of oscillation expressed as is valid for
freely swinging cylindrical pendulums. Obtain several cylinders
of various lengths - ideally a variation of length from two to
five times the smallest should be used and experimentally
compare their lengths and periods of oscillation to the theoret-
ical relation of T20..- ).

b. The SimpZe Leven

A simple lever system is another physical system that may be pro-,

fitably studied to gain insights into the advantages of quantitative

measurements. An inexpensive and easily obtainable system may be composed

of a yardstick as a lever arm, a system of small standard weights from a

two pan balance system and a sturdy fulcrum.

Using a justification similar to that for the pendulum problem for

this study, namely that it is a good representative problem of the larger

class of real physical problems that are studied in physical science, instruct

students to study the lever system, first qualitatively and then quantitatively.
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Qualitative Study

(i) Using two weights only, not necessarily the same value,
find as many different relations between the position of the
weights and the balanced condition of the system as you can.

(ii) Using one weight in a fixed position on one side of
the' lever-fitid -qualitatively where -dif ferent weights- must
be placed on the other side, one at a time, to achieve
the balanced condition.

(iii) Construct qualitative laws describing your results.

Quantitative Study

(iv) Make measurements of four conditions under which a balancec
is achieved using two fixed weights. Record the value
of the weights and their distances from the center support.

(v) After you have constructed a table containing the distances
for two objects in four balanced positions, move one object
to a new position. On the basis of the data in your table
alone, predict where the other object must be placed to-
regain a balanced condition.

Plot on -a graph the distances of one object from the
center support versus the distance of the other object
from the center support during balanced conditions. Using
the graph, predict where one object mustbe when the position
of the other is fixed as described above.

Finally, experimentally determine where the other weight
must be if the balanced condition is to be regained. Measure
the distance of the second weight from the center support
and compare this value with the two predicted values.
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Pictorially 59

if then

or if
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then
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to maintain balance

Fig. 14
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Verbally

1. Given two weights not necessarily the same, there are numerous

balanced positions.

(b) Once a balanced position is obtained, if one weight is moved

in or out from the fulcrum the other-must be moved in or out

as well, if the balanced condition is to be maintained.

2. (a) If a balanced condition is obtained for two weights and one is

replaced by a lighter weight, the balanced position of the new

weight i3 further from the fulcrum.

(b) If a balanced condition is obtained for two weights and one is

replaced by a heavier weight, the balanced position of the new

weight is closer to the fulcrum.

As in the problem dealing with the pendulum this is a useful

description, but it is lacking precision. Instruct the students

to make a quantitative study, this time measuring and recording

the value of the weights and the position under balanced conditions,

As a consequent, groups will generate data tables similar to that

shown in figure 15.
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LEVER STUDY

Balanced condition with two weights with varying position

Value of Weight I 300gms..; value of Weight II 100 gms.

Xi 5cm 10cm 15cm 20cm

X2 15cm 30cm 45cm 60cm

I II

OAP

=;.;: it ;1711'.

Balanced condition with one weight fixed (W1) varying position and weight
of 147.

Value of Weight I 300gm; X1 10cm

X2 30cm 60cm 15cm

Weight II 100gm 50gm 200gm .

73

Fig. 15
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Problems:

Using the data generated in figure 15, and graphical techniques

of extrapolation and interpolation, predict:

(1) The-necessary-positIon of 1 for cnriA41--tnn-

WI 10 300 gms, WII 100 gms, and X
1

= 24cm.

4f

(ii) The necessary position of X2 for a balanced condition of WI= 300gms.
W
II
= 100gms. and X

1
= 12.5cm.

(iii) The necessary position of X9 for a balanced condition of WI = 300gms.,
Xi = 10cm, and Wu =-150gms.

(iv) The necessary position of X2 for a balanced condition of WI = 300gms,
X
1

- 10cm, and WII = 75gms.

(v) Try to find a mathematical relation among the quantities WI, WII
XI, and X.2 as suggested by the "trend" of the data.

Hint: Try simple relations like:

or

WI x W = X1 X. XII 1
- 2

= W.
II/

X
I

etc.

C. A CompaAi4on q the 4tudie4 the Levet and the Pendutum

Questions:

(i) What was the difference in the two solutions obtained in these
M1

problems?

(ii) What solution contains more information?

(iii) What was the usefulness of making measurements?

74



d. Connecting the Raut14 to Othet Pnincipu

At the end of the experiments on real phenomena it is a natural

reaction for the students to search for a more fundamental understanding

of their results, asking "why" is the period of oscillation of the

.pendulum related_to_its_Iength_the,way it is or "why" different weight _

objects balance as they do on opposite sides of the fulcrum of a lever.

The question does not arise for the analogue problems because it is clear

they are isolated exercises or artifical constructs. Trying new information

and insights to the rest of what one knows is a natural instinct, a tendency

of the layman and professional scientist alike. Only the degree of logical

rigor and the methods used in making the connections differ for each. When

a layman asks "why" there are rarely narrow constraints on the quality of an

acceptable answer. Often an answer that indicates the degree of difficulty

of a solution or one that identifies a fUndamental principle that is opera-

tive is acceptable as a useful though loose connection. Scientists make

more stringent demands on the quality and nature of their connections. For

it is an integral part of the structure and practice of science that 'connect-

ions between our discoveries of natural phenomena be sought that are logically

rigorous and that our models constructed taken as a whole form logically self

consistent structures. As an example consider the question of why the period

of oscillation of the pendulum is observed to be independent of the weight

(or-mass)-of the-pendulum-bob-and-dependent-om-lts-lengthWe calvcanatruct____

two different levels of "answers". First we will construct a mathematically

rigorous answer to satisfy the scientist who is versed in the principles of
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basic physics and calculus and from this extract a less rigorous answer.

The point in displaying the mathematical solutions here is not to prove

the legitimacy of these connections but to display the ingredients, charact-'

er and structure Of this kind of "answer". An appreciation of these points

will not_require en understangling of the.equatione,uzed only an ability to

identify the constituent components of the solution.

The mathematical solution displayed in figure 16 involves a use of

several areas of mathematics but only two physical principles. Closer

inspection shows that even the physiCal principle in step 1 is only another

form or special case of the principle used in step 3. Hence, the only physical

principle used is Newton's second law and the fact that the weight of an object

may be expressed as its mass times the acceleration of a freely falling object.

But the latter is also a consequence of Newton's 2nd Law. Consequently, we

may Say that the result that T2404.2- is a logical (mathematical) consequence

of Newton's second law applied to objects freely swinging at small angles.

The statement is not very exciting for most of us; it has all the

appeal of a gigantic non-sequitor; or we feel like Dr. Watson after Sherlock

Holmes has announced one of his brilliant solutions without giving the details.

This is one of the strengths of the use of mathematics to make,connecrions that

are inaccessible to our everyday sense of order and intuition. By using the

mathematics indicated above we have arrived at an answer we could not have

otherwise. anticipated- Moreoveri-thIs-solution-ia-rigdrOdC and wilr-64-

universally agreed on as correct by anyone versed in the techniques used to

find the answer.
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Even so, once having obtained the answer this way we are without

insight unless we reflect on the role of the physical principles used in

obtaining the solution. If we reach -7.nto the heart of the solution and

inspect the crucial features of the physical principles involved we can

construct a simpler version using hindsight and analogies. Essentially what

we have done is to take a system (the bob) which is freely swinging in a

two dimensional plane'..- it "falls" periodically under its own weight and it

is repeatedly "raised" from its vertical hanging position and analyze only

the horizontal component of this motion. Such an analysis plus the use of

an analogy enables us to understand why the resultant motion is independent

of the mass of the bob. The problem as analyzed above is similar to a ball

rolling down a frictionless inclined plane, where the tendency of the ball

to fall is translated into some horizontal motion. in that case toor;. which

is much simpler, the acceleration of the motion is independent of its mass

but dependent on the angle of the incline.

Thus, we are able to construct our second "answer"s namely that

a swinging pendulum is like a ball rolling between two inclined planes as shown

in figure 17. The fact that the motion of a pendulum is independent of its

mass is similar to the reasons that the motion of the rolling ball on the

incline is independent of its mass, namely all masses fall at the same accel-

eration and the horizontal component of this motion has the same property.

The fact that the period depends on the length is related to the fact that

the period of oscillation of the ball rolling on the incline.

This latter argument is not as logically tight nor would one find
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A

-a universal agreement to the analogies. But it is qualitatively "correct".

In both solutions however, there is an appeal to some more basic or

fundamental law. The quality of the non-mathematical answer is appealing

because -t-ia-simpler and because it is suggestive. We are able to use it

.411.111,-ing-furthermore irituitive-comiectionawIth.out-e-xpeyiesce

only has a value when it is based on a logically substantial argument that

will bare the weight of exhaustive critical inspection.

Answers to apparently innocent questions of why the results of

an experiment are as they are, are not always so complicated nor do they

always lead us through a labyrinth of mathematical logic. It all depends

on how far we are from the "basic" principles in terms of which we want an

answer. In the case of the law of levers that we found, the answer to Why

the weights balance as they do has a simple form, namely, "because that's

the way it is". That is, in this case we have observed a fundamental law;

it cannot be dissected into anything simpler; it is a one of fundamental

starting po.nts on which we base our knowledge of physics.
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VI.. A SUMMARY

A. SYNOPSIS

Upon completing several sections of this unit on the nature of

physical science, students are ready to probe their experience, adding a

very deliberate thinking about the structure of science to their practice

of it. By then they'will have gained a working knowledge of what science

is about, as they have participated in the process several times. It

becomes timely to enhance these experiences pulling them together, taking

stock'of the anet:omy of Li subject, their involvement in it, and their

reactions to it.

B. THE SCIENTIFIC METHOD

Although we have outlined and described several scientific studies

in the preceding sections, we have refrained from listing the major components

of the scientific method as a procedural guide so as to encourage students to

develop their own style of investigation without heavy suggestive influence.

It would, however, be appropriate to construct that list here for the purpose

of a comparison with the methods that they developed. Below is a brief summary

of the principle features of a scientific study.

a) Sensing the Problem - As a first stage every scientist senses the

problem as a vaguely defined challenge. He becomes fascinated

and is motivated to pursue it further.

b) Defining the Problem - He mulls over his impressions,re-examines

the situation until he can construct a precise statement of
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a problem. Perhaps not at first the one that he had the

original notion about. This is a valuable step in ordering

his thoughts on the study.

c) Designing an Experiment - This is a stage of deliberate and

ordered planning where the researcher designs and carries out

a course of action.

d) Search for Pattern - In this stage the researcher attempts to

form a solution to his problem. If the search is for a general

law that prevails throughout a class of phenomena, then he

searches for the general features that underlies all of the

etperiments and attempts to state it simply in the form of a

general law. If he is searching for an explanation of a phen-

omenon in terms of well known laws, then he trys to establish

the connection by forming a hypothesis.

e) Test for the Validity of the Results As a final stage in the

confirmation of a solution to a problem, the researcher must

extend his test to include new circumstances that show that his

answer is correct and not an accidental matching of a model to

reality.

The features are not an exhaustive listing of the possible steps or stages of

a scientific study; but they are representative of the major features that

are found in most. It must also be pointed out that the order of these features

as listed above taken as a whole represents only on ideal procedure. In

actual practice the sequence and frequency with which these features occur

vary with the style and insights of the individual researcher. The process

8 4
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of creation is a scientific study, just like that in anv other creative

human endeavor such as music or art cannot he wholly anticipated.

Ouution4

For each of the investigations you carried out in preceding sections:

(a) Identify those features listed above that also occurred in
your studies.

(b) Identify those features or stages that were found in your
studies but are not listed above.

(c) Construct a diagram that shows the order and frequency of
occurrence of things that represent each of your studies.

(d) Using the diagram you construct to represent each of your
studies indicate which features you consider most important
to the success of the study as a whole.

As we have indicated above, the features of the scientific study

listed are the bold outlines or the skeletons of the structure. There is an

elusive'component that is difficult to articulate. It ties these components

together and provides the soul of the study. It is this aspect that the

professional scientists pursues while subconsciously engrossed in and executing

all the others. For him the elements of the method we have listed are so

familiar as to be undeserving of conscious consideration, like breathing, but

just as necessary. It is in this spirit that P.W. Bridgeman made his remarks

about the scientific method reproduced in appendix 1.

Quest

Review Bridgeman's statement on the scientific method.

(a) What do you suppose Bridgeman means when he writes, In short,
science is what scientists do, and there are as many scientific
methods as there are individual scientists."

8'
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(b) What do you suppose Bridgeman means when he writes that
scientists feel complete freedom to use any method or device
whatever which might yield the correct answer?

(c) What procedure does a scientist follow in trying to guess a

hypothesis? Is there any method one can follow in order to
guess the solution?

C. SCIENTIFIC TRUTH

One fact about modern science is that it never deals with the

question of "why" things are the way they are or of "why" things behave the

way they do. The domain of scientific endeavor is to describe as simply as

possible how things behave with one another in such a way that it enables

th,2m to predict the outcome of future events. If pushed by a layman with

th* question "Yes, yes I now understand 'how', but tell me 'why'?" The

scientist is apt to answer "Because thats the way God made it." The layman

may at first be disappointed with this reply, but only because he has not

considered carefully what he means by "why". This question is a request to

have something explained in terms of something more basic, i.e., that logical

connections be made between some other basic truths or starting points.

Scientific truth begins with descriptions of general time honored patterns of

the behavior of nature.

Thus, basic scientific theory such as the theory of gravity is true

if it is a good (i.e., useful) description of the behavior of that phenomenon.

Search any text on physics for the section on gravitational theory, for example,

and it will begin with a mathematical description of the attraction between

two masses. There is no explanation of "why" they attract; that description is

the point of entry into the theory. Hence, a theory is a model of reality whose
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usefulness has been substantiated by exhaustive experimental evidence.

Some models are "truer" than others for there is no unique way

of representing the behavior of nature. Often several distinct models will.

do just as well at explaining a given set of experimental data. One chooses

between them by examining larger sets of data until ane is able to discard

those that are proven inappropriate on the basis of new informatlon.

quezt-Zonz

(a) Is astrology a science?

(b) How do men choose between two scientific theories which
describe the same phenomenon? In other words, what makes
a theory good or bad?

(c) What do people mean when they say science is "exact"? Is
what a scientist does when he guesses at answers to problems
exact?

(d) Are there any experiences which you have had that you feel
science could not help to explain? What are limitations to
how far science can help us to understand the world?

(e) Construct argument based on experimental proof (or the lack
of it) of the existence of ghosts and of extra-sensory-
perception (E.S.P.).

D. THE PERSONAL MOTIVATIONS OF SCIENTISTS

A typical stereotype of the average scientist is that he is an

unfeeling, (at worst) weird, (at best) genius, which by and large is a result

of a general unfamiliarity with the scientist. We may rectify this by taking

a close look at some of the personal reflections of a scientist. Appendix 2

containsselected quotes from an article by the gifted Nobel prize winning -..

scientist R. P. Feynman on his feelings about science.

8(
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Quution4

(a) What do you suppose motivates a scientist to work in his
field? Compare this with your motives for choosing your
major field.

(b) Have you ever felt similar to what Feynman is attempting
to express?

(c) Think of a famous musician getting carried away with his
music. Do you think a scientist can feel the same way about
creating beautiful music?

(d) What does a religious man experience when he feels the
nearness of God? Could this be the kind of feeling Fey-
nman is trying to express?

(e) If science is a process of thinking and a feeling, why
do you suppose the average man thinks scientists are cold
and unfeeling? Isn't he motivated in a similar fashion
to others? What is there that is usually creates this
stereotype?

E. EXTENSIONS

An obvious alternative to classroom discussions or homework

assignments in which the entire class participates is a good selection

of reading material on the philosophy and history of science. There are

many books discussing the history of science which are elementary enough

to be of use at this time. There are some good introductory books on the

philosophy of science which might be recommended. Perhaps, some students

would find the biographies of various scientists interesting. It is sug-

gested that each instructor prepare a bibliography of appropriate books

available in his school's library.

As a beginning we would recommend "The Sleepwalker" by A Koestler.
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It contains an exciting account of the process of discovery as well as the

discoveries of the great astronomers. Below are selected parts of the preface

of the book which describe Koestler's approach.

"It is a personal and speculative account of a controversial subject.
It opens with the Babylonians aind.ends with Newton, because we stilllive in an essentially Newtonian universe."

"Secondly, I have been interested, for a long time, in the psycho-
logical process of discovery as the most concise manifestation of
man's creative faculty - and in that converse process that blinds
him towards truths which, once perceived by a seer, become so
heartbreakingly obvious."

"The progress of Science is generally regarded as a kind of clean,
rational advance along a straight ascending line; in fact, it has
followed a zig-zag course, at times almost more bewildering than
the evolution of political thought. The history of cosmic theories,
in particular, nay without exaggeration be called a history of col-
lective obsessions and controlled schizophrenias; and the manner in
which some of the most-important individual discoveries were arrived
at reminds one more of a sleepwalker's performance than an electronic
brain's."
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APPENDIX 1

The following is exerpted from an article by Percy Bridgeman,

page 1 of Reader 1 of the Harvard Project Physics Series.

On Scientific Method by Percy W. Bridgeman

It seems to me that there is a good deal of ballyhoo about scientific

method. I venture to think that the people who talk most about it are the

people who dO least about it. Scientific method is what working scientists

do, not what other people or even they themselves may say about it. No

wc,rking scientist, when he plans an experiment in the laboratory, asks him-

self whether he is being properly scientific, nor is he interested in whatever

method he may be using as method. When the scientist ventures to criticize

the work of his fellow scientist, as is not uncommon, he does not base his

criticism on such glittering generalities as failure to follow the "scientific

method", but his criticism is specific, based on some feature characteristic

of the particular situation. The working scientist is always too much concerned

with getting down to brass tacks to be willing to spend his time on generalities.

Scientific method is something talked about by peOple standing on

the outside and wondering how the scientist manages to do it. These people

have been able to uncover various generalities applicable to at least most of

what the scientist does, but it seems to me that these generalities are not

very profound and could have been anticipated by anyone who knew enough about

scientists to kilow what is their primary objective. I think that the object-

ives of all scientists have this in common - that they are all trying to get
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the correct answer tb the particular problem in hand. This may be expressed

in more pretentious language as the pursuit of truth. Now if the answer to

the problem is correct there must be some way of knowing and proving that it

is correct - the very meaning of truth implies the possibility of checking

or verification. Hence, the necessity for checking his results always inheres

in what the scientist does. Furthermore, this checking must be exhaustive,

for the truth of a general proposition may be disproved by a single exception-

al case. A long experience has shown the scientist that various things are

inimical to getting the correct answer. He has found that it is not sufficient

to trust the word of his neighbor, but that if he wants to be sure, he must

be able to check a result for himself. Hence, the scientist is the enemy of

aLl authoritarianism. Furthermore, he finds that he often makes mistakes

himself and he must learn how to guard against them. He cannot permit himself

any preconception as to what sort of results he will get, nor must he allow

himself to be influenced by wishful thinking or any personal bias. All these

things together give the "objectivity" to science which is often thought to

be the essence of the scientific method.

But to the working scientist himself all this appears obviousand

trite. What appears to him as the essence of the situation is that he is not

consciously following any prescribed course of action, but feels complete
(

freedom to utilize any method or device whatever which in the particular

situation before him seems likely to yield the correct answer. In his attack

on his specific problem he suffers no inhibitions of precedent or authority,

but is completely free to adopt any course that his ingenuity is capable of

suggesting to him. No one standing on the outside can predict what the in-

dividual scientist will do or what method he will follow. In short, science
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APPENDIX 2

The following paragraphs are quotations from "The Value of Science"

by Richard P. Feynman. The article is found in Harvard Project Physics,

Reader 1.

"Another value of science is the fun called intellectual enjoyment

which some people get from reading and learning and thinking about it, and

which others get from working in it. This is a very real and important point

and one which is not considered enough by those who tell us it is our social

responsibility to reflect on the impact of science on society."

"I have thought about these things so many times alone that I hope

you will excuse me if I remind you of some thoughts that I am sure you have

all had or this type of thought - which no one could ever have had in the

past, because people then didn't have the information we have about the

world today.

For instance, I stand at the seashore, alone and start to think.

There are the rushing waves...mountains of molecules, each stupidly minding

its own business...trillions apart...yet forming white surf in unison.
/4-

Never at rest...tortured by energy...wasted prodigiously by the sun...

poured into space. A mite makes the sea roar.

Deep in the sea, all molecules repeat the patterns,of another until

complex new ones are formed. They make others like themselves...and a new

dance starts.

Growing in size and complexity...living things, masses of atoms, DNA,
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protein...dancing a pattern ever more intricate.

Out of the cradle onto the dry land...here it is standing...atoms

with consciousness...matter with curiosity-.

Stands at the sea...wonders at wondering...I...a universe of atoms...

an atom in the universe."

The same thrill, the same awe and mystery, come again and again when

we look at any problem deeply enough. With more knowledge comes deeper,, more

wonderful mystery, luring one on to penetrate deeper still. Never concerned

that the answer may prove disappointing, but with pleasure and confidence.we

turn over each new stone to find unimagined strangeness leading on to more

wonderful questions and mysteries - certainly a grand adventure?

It is true that few unscientific people have this particular type of

religious experience. Our poets do not write about it; our artists do not

try to portray this remarkable thing. I don't know why. Is nobody inspired

by our present picture of the universe? The value of science remains unsung

by singers, so you are reduced to hearing - not a song or a poem, but an

evening lecture about it. This is .not yet a scientific age."
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APPENDIX 3

The following account of Kepler's study of the "Cosmic Mystery"

and his solution of the five perfect solids are parts of Chapter II of

"The Sleepwalkers" by Arthur Koestler, published by Universal Library,

Grosset & Dunlap:

'For physical, or if you prefer, for metaphysical reasons',
he then began to wonder why there existed just six planets
'in'stead of twenty or a hundred', and why the distances and
velocities of the planets were what they were. Thus
started his quest for the laws of planetary motion.

At first he tried whether one orbit might perchance be
twice, three or four times as large as another. lost

much time on this task, on this play with numbers; but I
could find no order either in the numerical proportions
or in the deviations from such proportions." He warns
the reader that the tale of his various futile efforts
'will anxiously rock thee hither and thither like the
waves of the sea....'

...'I lost almost the whole of the summer with this heavy
work. Finally I came close to the true facts on a quite
unimportant occasion. I believe Divine Providence arranged
matters in such a way that what I could not obtain with
all my efforts was given tome through chance; I believe
all the more that this is so as I have always prayed to
God that he should make my plan succeed, if what Copernicus
had said was the t'ruth'....

The occasion of this decisive event was the aforementioned
lecture to his class, in which he had drawn, for quite
different purposes, a geometrical figure on the blackboard.
The figure showed (I must describe it in a simplified
manner) a triangle fitted between two circles; in other
words, the outer circle was circumscribed around the
triangle, the inner.circle inscribed into it....

9 ()
Fig. 18
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As he looked at the two circles, it suddenly struck him
that their ratios were the same as those of the orbits
of Saturn and Jupiter, The rest of the inspiration came
in a flash. Saturn and Jupiter are the 'first' (i.e.
the two outermost) planets, and 'the triangle is the first
figure in geometry. Immediately I tried to inscribe
into the next interval between Jupiter and Mars a square, -
between Mars and Earth a pentagon, between Earth and
Venus a hexagon....'

Itdld not work-not yet, but he felt that he was qtrIte
close to the secret. 'And now I pressed forward again.
Why look for two-dimensional forms--and, behold dear
reader, now you have my discovery in your hands!...'

The point is this. One' caa construct any number of
regular polygons in a two-dimensional plane; but one
can only construct a limited number of regular solids
in three-dimensional space, These 'perfect solids',
of which all faces are identical, are: (1) the
tetrahedron (pyramid) bounded by four equilateral
triangles; (2) the cube; (3) the octahedron (eight
equilateral triangles); (4) the dodecahedron (twelve
pentagons) and (5) the icosahedron (twenty equilateral
triangles).... 14

Fig. 19

They were also called the 'Pythagorean' or 'Platonic'
solids. Being perfectly symmetrical, each can be in
intenibed into a sphere, so that all of its vertices
(corners) lie on the surface of the sphere. Similarly
each can be eikaum4cnibed around a sphere, so that the
sphere touches every face in its centre. It is a
curious fact, inherent in the nature of three-dimensional
space, that (as Euclid proved) the number of regular
solids is limited to these five forms. Whatever
shape yot choose as a face, no other perfectly symmetri-
cal solid can be constructed except these five. Other
combinations just cannot be fitted together....

So there existed only five perfect solids - and five
intervals between the planets: It was impossible to
believe that this should be by chance, and not by
divine arrangement. It provided the complete answer
to the question why there were just six planets 'and
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not twenty or a hundred'

'It is amazing!' Kepler informs his readers, 'although
I had as yet no clear idea of the order in which the
perfect solids had to be arranged, I nevertheless
succeeded...in arranging them so happily, that later on,
when I checked the matter over, I had nothing to alter.
Now I no longer regretted the lost time; I no longer
tired of my work; I shied from no computation, however
difficult. Day and night I spent with calculations to
see whether the proposition that I had formulated tallied
with the Copernican orbits or whether my joy would be
carried away by the winds.... Within a few days every-
thing fell into its place. I saw one symmetrical solid
after the other fit in so precisely between the
appropriate orbits, that if a peasant were to ask you
on what kind of hook the heavens are fastened so that
they don't fall down, it will be easy for thee to
answer him. Farewell!'
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APPENDIX 4
17,

Kepler's three laws concern the general properties of the motion

of the planets in their orbits about the sun. Although these laws appear

innocent and simple, Kepler spent twenty-two years of his life arriving at

them and wrote two volumes describing the process of that discovery and the

implications of the laws. The contribution of these laws to the development

of classical physics was as important as the contribution of Einstein's

famous law for mass energy conversion, viz. E2=mC 2 , was to the development

of modern physics. Kepler's statement of the laws was more dramatic than

our concise version given below, but our statement contains the essential

features of these laws.

Kepeets4 Lam:

1. The path of a planet in its orbit about the sun is an ellipse

and not a circle with the sun as one focii.

2. The motion of each planet may he characterized by notino, that

an imaginary line from the sun to the planet traces out equal

areas in equal times.

3. The ratio of the period, T, of the nearly circular orbit of the

planet is related to its average distance, R, from the sun by:

T
2
is proportional to R

3
.
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